skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Caselden, Dan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We have used the UKIRT Hemisphere Survey combined with the UKIDSS Galactic Cluster Survey, the UKIDSS Galactic Plane Survey, and the CatWISE2020 catalog to search for new substellar members of the nearest open cluster to the Sun, the Hyades. Eight new substellar Hyades candidate members were identified and observed with the Gemini/GNIRS near-infrared spectrograph. All eight objects are confirmed as brown dwarfs with spectral types ranging from L6 to T5, with two objects showing signs of spectral binarity and/or variability. A kinematic analysis demonstrates that all eight new discoveries likely belong to the Hyades cluster, with future radial velocity and parallax measurements needed to confirm their membership. CWISE J042356.23+130414.3, with a spectral type of T5, would be the coldest (Teff≈ 1100 K) and lowest-mass (M≈ 30MJup) free-floating member of the Hyades yet discovered. We further find that high-probability substellar Hyades members from this work and previous studies have redder near-infrared colors than field-age brown dwarfs, potentially due to lower surface gravities and supersolar metallicities. 
    more » « less
  2. Abstract We present the discovery of VHS J183135.58−551355.9 (hereafter VHS J1831−5513), an L/T transition dwarf identified as a result of its unusually red near-infrared colors (J−KS= 3.633 ± 0.277 mag;J−W2 = 6.249 ± 0.245 mag) from the VISTA Hemisphere Survey and CatWISE2020 surveys. We obtain low-resolution near-infrared spectroscopy of VHS J1831−5513 using the Magellan Folded port InfraRed Echellette spectrograph to confirm its extremely red nature and assess features sensitive to surface gravity (i.e., youth). Its near-infrared spectrum shows multiple CH4absorption features, indicating an exceptionally low effective temperature for its spectral type. Based on proper-motion measurements from CatWISE2020 and a photometric distance derived from itsKs-band magnitude, we find that VHS J1831−5513 is a likely (∼85% probability) kinematic member of theβPictoris moving group. Future radial velocity and trigonometric parallax measurements will clarify such membership. Follow-up mid-infrared or higher-resolution near-infrared spectroscopy of this object will allow for further investigation as to the cause(s) of its redness, such as youth, clouds, and viewing geometry. 
    more » « less
  3. Abstract We present three new brown dwarf spectral-binary candidates: CWISE J072708.09−360729.2, CWISE J103604.84−514424.4, and CWISE J134446.62−732053.9, discovered by citizen scientists through the Backyard Worlds: Planet 9 project. Follow-up near-infrared spectroscopy shows that each of these objects is poorly fit by a single near-infrared standard. We constructed binary templates and found significantly better fits, with component types of L7+T4 for CWISE J072708.09−360729.2, L7+T4 for CWISE J103604.84−514424.4, and L7+T7 for CWISE J134446.62−732053.9. However, further investigation of available spectroscopic indices for evidence of binarity and large amplitude variability suggests that CWISE J072708.09−360729.2 may instead be a strong variability candidate. Our analysis offers tentative evidence and characterization of these peculiar brown dwarf sources, emphasizing their value as promising targets for future high-resolution imaging or photometric variability studies. 
    more » « less
  4. Abstract We report the discovery of a high-velocity, very low-mass star or brown dwarf whose kinematics suggest it is unbound to the Milky Way. CWISE J124909.08+362116.0 was identified by citizen scientists in the Backyard Worlds: Planet 9 program as a high-proper-motion (μ= 0.″9 yr−1) faint red source. Moderate-resolution spectroscopy with Keck/NIRES reveals it to be a metal-poor early L subdwarf with a large radial velocity (−103 ± 10 km s−1), and its estimated distance of 125 ± 8 pc yields a speed of 456 ± 27 km s−1in the Galactic rest frame, near the local escape velocity for the Milky Way. We explore several potential scenarios for the origin of this source, including ejection from the Galactic center ≳3 Gyr in the past, survival as the mass donor companion to an exploded white dwarf, acceleration through a three-body interaction with a black hole binary in a globular cluster, and accretion from a Milky Way satellite system. CWISE J1249+3621 is the first hypervelocity very low-mass star or brown dwarf to be found and the nearest of all such systems. It may represent a broader population of very high-velocity, low-mass objects that have undergone extreme accelerations. 
    more » « less
  5. Abstract Beyond our Solar System, aurorae have been inferred from radio observations of isolated brown dwarfs1,2. Within our Solar System, giant planets have auroral emission with signatures across the electromagnetic spectrum including infrared emission of H3+and methane. Isolated brown dwarfs with auroral signatures in the radio have been searched for corresponding infrared features, but only null detections have been reported3. CWISEP J193518.59-154620.3. (W1935 for short) is an isolated brown dwarf with a temperature of approximately 482 K. Here we report James Webb Space Telescope observations of strong methane emission from W1935 at 3.326 μm. Atmospheric modelling leads us to conclude that a temperature inversion of approximately 300 K centred at 1–10 mbar replicates the feature. This represents an atmospheric temperature inversion for a Jupiter-like atmosphere without irradiation from a host star. A plausible explanation for the strong inversion is heating by auroral processes, although other internal and external dynamical processes cannot be ruled out. The best-fitting model rules out the contribution of H3+emission, which is prominent in Solar System gas giants. However, this is consistent with rapid destruction of H3+at the higher pressure where the W1935 emission originates4
    more » « less
  6. Abstract We present the discovery of 118 new ultracool dwarf candidates, discovered using a new machine-learning tool, namedSMDET, applied to time-series images from the Wide-field Infrared Survey Explorer. We gathered photometric and astrometric data to estimate each candidate’s spectral type, distance, and tangential velocity. This sample has a photometrically estimated spectral class distribution of 28 M dwarfs, 64 L dwarfs, and 18 T dwarfs. We also identify a T-subdwarf candidate, two extreme T-subdwarf candidates, and two candidate young ultracool dwarfs. Five objects did not have enough photometric data for any estimations to be made. To validate our estimated spectral types, spectra were collected for two objects, yielding confirmed spectral types of T5 (estimated T5) and T3 (estimated T4). Demonstrating the effectiveness of machine-learning tools as a new large-scale discovery technique. 
    more » « less
  7. Abstract We present the discovery of 13 new widely separated T dwarf companions to M dwarf primaries, identified using Wide-field Infrared Survey Explorer/NEOWISE data by the CatWISE and Backyard Worlds: Planet 9 projects (hereafter BYW). This sample represents an ∼60% increase in the number of known M + T systems, and allows us to probe the most extreme products of binary/planetary system formation, a discovery space made available by the CatWISE2020 catalog and the BYW effort. Highlights among the sample are WISEP J075108.79-763449.6, a previously known T9 thought to be old due to its spectral energy distribution, which was found by Zhang et al. (2021b) to be part of a common proper motion pair with L34-26 A, a well-studied young M3 V star within 10 pc of the Sun; CWISE J054129.32-745021.5 B and 2MASS J05581644-4501559 B, two T8 dwarfs possibly associated with the very fast-rotating M4 V stars CWISE J054129.32745021.5 A and 2MASS J05581644-4501559 A; and UCAC3 52-1038 B, which is among the widest late-T companions to main-sequence stars, with a projected separation of ∼7100 au. The new benchmarks presented here are prime JWST targets, and can help us place strong constraints on the formation and evolution theory of substellar objects as well as on atmospheric models for these cold exoplanet analogs. 
    more » « less
  8. Abstract We report the identification of 89 new systems containing ultracool dwarf companions to main-sequence stars and white dwarfs, using the citizen science project Backyard Worlds: Planet 9 and cross-reference between Gaia and CatWISE2020. 32 of these companions and 33 host stars were followed up with spectroscopic observations, with companion spectral types ranging from M7–T9 and host spectral types ranging from G2–M9. These systems exhibit diverse characteristics, from young to old ages, blue to very red spectral morphologies, potential membership to known young moving groups, and evidence of spectral binarity in nine companions. 20 of the host stars in our sample show evidence for higher-order multiplicity, with an additional 11 host stars being resolved binaries themselves. We compare this sample’s characteristics with those of the known stellar binary and exoplanet populations, and find our sample begins to fill in the gap between directly imaged exoplanets and stellar binaries on mass ratio–binding energy plots. With this study, we increase the population of ultracool dwarf companions to FGK stars by ∼42%, and more than triple the known population of ultracool dwarf companions with separations larger than 1000 au, providing excellent targets for future atmospheric retrievals. 
    more » « less
  9. Abstract We present the analysis of two unusually red L dwarfs, CWISE J075554.14−325956.3 (W0755−3259) and CWISE J165909.91−351108.5 (W1659−3511), confirmed by their newly obtained near-infrared spectra collected with the TripleSpec4 spectrograph on the Southern Astrophysical Research Telescope. We classify W0755−3259 as an L7 very low-gravity dwarf, exhibiting extreme redness with a characteristic peakedH-band and spectral indices typical of low-gravity late-type L dwarfs. We classify W1659-3511 as a red L7 field-gravity dwarf, with a more roundedH-band peak and spectral indices that support a normal gravity designation. W1659−3511 is noticeably fainter than W0755−3259, and the roundedH-band of W1659−3511 may be evidence of CH4absorption. 
    more » « less
  10. Abstract We present the discovery of CWISE J052306.42−015355.4, which was found as a faint, significant proper-motion object (0.″52 ± 0.″08 yr −1 ) using machine-learning tools on the unWISE re-processing of time series images from the Wide-field Infrared Survey Explorer. Using the CatWISE2020 W1 and W2 magnitudes along with a J -band detection from the VISTA Hemisphere Survey, the location of CWISE J052306.42−015355.4 on the W1 − W2 versus J − W2 diagram best matches that of other known, or suspected, extreme T subdwarfs. As there is currently very little knowledge concerning extreme T subdwarfs we estimate a rough distance of ≤68 pc, which results in a tangential velocity of ≤167 km s −1 , both of which are tentative. A measured parallax is greatly needed to test these values. We also estimate a metallicity of −1.5 < [M/H] < −0.5 using theoretical predictions. 
    more » « less